کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
532609 | 869974 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A sparsity driven kernel machine based on minimizing a generalization error bound
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new sparsity driven kernel classifier is presented based on the minimization of a recently derived data-dependent generalization error bound. The objective function consists of the usual hinge loss function penalizing training errors and a concave penalty function of the expansion coefficients. The problem of minimizing the non-convex bound is addressed by a successive linearization approach, whereby the problem is transformed into a sequence of linear programs. The algorithm produced comparable error rates to the standard support vector machine but significantly reduced the number of support vectors and the concomitant classification time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 11, November 2009, Pages 2607–2614
Journal: Pattern Recognition - Volume 42, Issue 11, November 2009, Pages 2607–2614
نویسندگان
Dori Peleg, Ron Meir,