کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532711 869986 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A scalable framework for cluster ensembles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A scalable framework for cluster ensembles
چکیده انگلیسی

An ensemble of clustering solutions or partitions may be generated for a number of reasons. If the data set is very large, clustering may be done on tractable size disjoint subsets. The data may be distributed at different sites for which a distributed clustering solution with a final merging of partitions is a natural fit. In this paper, two new approaches to combining partitions, represented by sets of cluster centers, are introduced. The advantage of these approaches is that they provide a final partition of data that is comparable to the best existing approaches, yet scale to extremely large data sets. They can be 100,000 times faster while using much less memory. The new algorithms are compared against the best existing cluster ensemble merging approaches, clustering all the data at once and a clustering algorithm designed for very large data sets. The comparison is done for fuzzy and hard-k-means based clustering algorithms. It is shown that the centroid-based ensemble merging algorithms presented here generate partitions of quality comparable to the best label vector approach or clustering all the data at once, while providing very large speedups.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 5, May 2009, Pages 676–688
نویسندگان
, , ,