کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
532789 | 869994 | 2008 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fuzzy feature selection based on min–max learning rule and extension matrix
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In many systems, such as fuzzy neural network, we often adopt the language labels (such as large, medium, small, etc.) to split the original feature into several fuzzy features. In order to reduce the computation complexity of the system after the fuzzification of features, the optimal fuzzy feature subset should be selected. In this paper, we propose a new heuristic algorithm, where the criterion is based on min–max learning rule and fuzzy extension matrix is designed as the search strategy. The algorithm is proved in theory and has shown its high performance over several real-world benchmark data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 41, Issue 1, January 2008, Pages 217–226
Journal: Pattern Recognition - Volume 41, Issue 1, January 2008, Pages 217–226
نویسندگان
Yun Li, Zhong-Fu Wu,