کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532823 870002 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy classifier design using genetic algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Fuzzy classifier design using genetic algorithms
چکیده انگلیسی

A new method for design of a fuzzy-rule-based classifier using genetic algorithms (GAs) is discussed. The optimal parameters of the fuzzy classifier including fuzzy membership functions and the size and structure of fuzzy rules are extracted from the training data using GAs. This is done by introducing new representation schemes for fuzzy membership functions and fuzzy rules. An effectiveness measure for fuzzy rules is developed that allows for systematic addition or deletion of rules during the GA optimization process. A clustering method is utilized for generating new rules to be added when additions are required. The performance of the classifier is tested on two real-world databases (Iris and Wine) and a simulated Gaussian database. The results indicate that highly accurate classifiers could be designed with relatively few fuzzy rules. The performance is also compared to other fuzzy classifiers tested on the same databases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 12, December 2007, Pages 3401–3414
نویسندگان
, ,