کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533415 870113 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heteroscedastic linear feature extraction based on sufficiency conditions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Heteroscedastic linear feature extraction based on sufficiency conditions
چکیده انگلیسی

Classification of high-dimensional data typically requires extraction of discriminant features. This paper proposes a linear feature extractor, called whitened linear sufficient statistic (WLSS), which is based on the sufficiency conditions for heteroscedastic Gaussian distributions. WLSS approximates, in the least squares sense, an operator providing a sufficient statistic. The proposed method retains covariance discriminance in heteroscedastic data, while it reduces to the commonly used linear discriminant analysis (LDA) in the homoscedastic case. Compared to similar heteroscedastic methods, WLSS imposes a low computational complexity, and is highly generalizable as confirmed by its consistent competence over various data sets.


► WLSS is a non-iterative heteroscedastic linear feature extraction method.
► It approximates, in least squares, a linear operator giving a sufficient statistic.
► Its consistent competence over various data sets shows its high generalizability.
► It imposes lowest computational complexity among similar heteroscedastic methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 45, Issue 2, February 2012, Pages 821–830
نویسندگان
, , , ,