کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533756 870162 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High accuracy handwritten Chinese character recognition using LDA-based compound distances
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
High accuracy handwritten Chinese character recognition using LDA-based compound distances
چکیده انگلیسی

To improve the accuracy of handwritten Chinese character recognition (HCCR), we propose linear discriminant analysis (LDA)-based compound distances for discriminating similar characters. The LDA-based method is an extension of previous compound Mahalanobis function (CMF), which calculates a complementary distance on a one-dimensional subspace (discriminant vector) for discriminating two classes and combines this complementary distance with a baseline quadratic classifier. We use LDA to estimate the discriminant vector for better discriminability and show that under restrictive assumptions, the CMF is a special case of our LDA-based method. Further improvements can be obtained when the discriminant vector is estimated from higher-dimensional feature spaces. We evaluated the methods in experiments on the ETL9B and CASIA databases using the modified quadratic discriminant function (MQDF) as baseline classifier. The results demonstrate the superiority of LDA-based method over the CMF and the superiority of discriminant vector learning from high-dimensional feature spaces. Compared to the MQDF, the proposed method reduces the error rates by factors of over 26%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 41, Issue 11, November 2008, Pages 3442–3451
نویسندگان
, ,