کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533831 870177 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A statistics-based approach to control the quality of subclusters in incremental gravitational clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A statistics-based approach to control the quality of subclusters in incremental gravitational clustering
چکیده انگلیسی

As the sizes of many contemporary databases continue to grow rapidly, incremental clustering has emerged as an essential issue for conducting data analysis on contemporary databases. An incremental clustering algorithm refers to an abstraction of the distribution of the data instances generated by the previous run of the algorithm and therefore is able to cope well with the ever-growing contemporary databases. There are two main challenges in the design of incremental clustering algorithms. The first challenge is how to reduce information loss due to the data abstraction (or summarization) operations. The second challenge is that the clustering result should not be sensitive to the order of input data. This paper presents the GRIN algorithm, an incremental hierarchical clustering algorithm for numerical datasets based on the gravity theory in physics. In the design of GRIN, a statistical test aimed at reducing information loss and distortion is employed to control formation of subclusters as well as to monitor the evolution of the dataset. Due to the statistical test-based summarization approach, GRIN is able to achieve near linear scalability and is not sensitive to input ordering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 12, December 2005, Pages 2256–2269
نویسندگان
, , ,