کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534192 870230 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An affinity-based new local distance function and similarity measure for kNN algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
An affinity-based new local distance function and similarity measure for kNN algorithm
چکیده انگلیسی

In this paper, we propose a modified version of the k-nearest neighbor (kNN) algorithm. We first introduce a new affinity function for distance measure between a test point and a training point which is an approach based on local learning. A new similarity function using this affinity function is proposed next for the classification of the test patterns. The widely used convention of k, i.e., k = [√N] is employed, where N is the number of data used for training purpose. The proposed modified kNN algorithm is applied on fifteen numerical datasets from the UCI machine learning data repository. Both 5-fold and 10-fold cross-validations are used. The average classification accuracy, obtained from our method is found to exceed some well-known clustering algorithms.


► A new affinity function is introduced for the distance measure in the kNN algorithm.
► A novel similarity function for capturing proximity is proposed in the kNN algorithm.
► Proposed kNN algorithm has outperformed many recent variants of the original kNN.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 33, Issue 3, 1 February 2012, Pages 356–363
نویسندگان
, , ,