کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534284 870244 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Label propagation through minimax paths for scalable semi-supervised learning
ترجمه فارسی عنوان
انتشار برچسب با استفاده از مسیرهای مینیمکس برای یادگیری نیمه نظارتی مقیاس پذیر
کلمات کلیدی
پخش برچسب، مسیر مینیمکس یادگیری نیمه نظارتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• A new framework for efficient graph-based semi-supervised learning is proposed.
• The method propagates labels through only a few important paths (“minimax paths”).
• With early-stopping, the method takes O(N) time and space on a graph of N nodes.
• The computational cost of the method is independent of the number of classes.
• The method is especially useful for large-scale data with many classes.

Semi-supervised learning (SSL) is attractive for labeling a large amount of data. Motivated from cluster assumption, we present a path-based SSL framework for efficient large-scale SSL, propagating labels through only a few important paths between labeled nodes and unlabeled nodes. From the framework, minimax paths emerge as a minimal set of important paths in a graph, leading us to a novel algorithm, minimax label propagation. With an appropriate stopping criterion, learning time is (1) linear with respect to the number of nodes in a graph and (2) independent of the number of classes. Experimental results show the superiority of our method over existing SSL methods, especially on large-scale data with many classes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 45, 1 August 2014, Pages 17–25
نویسندگان
, ,