کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535030 870312 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing features
ترجمه فارسی عنوان
اندازه گیری متمایز براساس مجازات وزنی ویژگی برای طبقه‌بندی نزدیکترین همسایه k با ویژگی‌های از دست رفته
کلمات کلیدی
طبقه بندی kNN؛ ویژگی های گمشده؛ اندازه گیری ناهمگونی؛ عدم همبستگی مجازات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• kNN-FWPD classifier is proposed with FWPD as the underlying dissimilarity measure.
• kNN-FWPD classifier can be directly applied to datasets having missing features.
• The proposed classifier has similar time complexity compared to the kNN classifier.
• Experiments are conducted on 4 types of missingness: MCAR, MAR, MNAR1, and MNAR2.
• kNN-FWPD is found to outperform ZI, AI, and kNNI in terms of classification accuracy.

The k-Nearest Neighbor (kNN) classifier is an elegant learning algorithm widely used because of its simple and non-parametric nature. However, like most learning algorithms, kNN cannot be directly applied to data plagued by missing features. We make use of the philosophy of a Penalized Dissimilarity Measure (PDM) and incorporate a PDM called the Feature Weighted Penalty based Dissimilarity (FWPD) into kNN, forming the kNN-FWPD classifier which can be directly applied to datasets with missing features, without any preprocessing (like marginalization or imputation). Extensive experimentation on simulations of four different missing feature mechanisms (using various datasets) suggests that the proposed method can handle the missing feature problem much more effectively compared to some of the popular imputation mechanisms (used in conjunction with kNN).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 80, 1 September 2016, Pages 231–237
نویسندگان
, , ,