کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
535393 | 870344 | 2008 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we first present a self-training semi-supervised support vector machine (SVM) algorithm and its corresponding model selection method, which are designed to train a classifier with small training data. Next, we prove the convergence of this algorithm. Two examples are presented to demonstrate the validity of our algorithm with model selection. Finally, we apply our algorithm to a data set collected from a P300-based brain computer interface (BCI) speller. This algorithm is shown to be able to significantly reduce training effort of the P300-based BCI speller.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 29, Issue 9, 1 July 2008, Pages 1285–1294
Journal: Pattern Recognition Letters - Volume 29, Issue 9, 1 July 2008, Pages 1285–1294
نویسندگان
Yuanqing Li, Cuntai Guan, Huiqi Li, Zhengyang Chin,