کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535488 870349 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classifying EEG for brain computer interfaces using Gaussian processes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Classifying EEG for brain computer interfaces using Gaussian processes
چکیده انگلیسی

Classifying electroencephalography (EEG) signals is an important step for proceeding EEG-based brain computer interfaces (BCI). Currently, kernel based methods such as the support vector machine (SVM) are considered the state-of-the-art methods for this problem. In this paper, we apply Gaussian process (GP) classification to binary discrimination of motor imagery EEG data. Compared with the SVM, GP based methods naturally provide probability outputs for identifying a trusted prediction which can be used for post-processing in a BCI. Experimental results show that the classification methods based on a GP perform similarly to kernel logistic regression and probabilistic SVM in terms of predictive likelihood, but outperform SVM and K-nearest neighbor (KNN) in terms of 0–1 loss class prediction error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 29, Issue 3, 1 February 2008, Pages 354–359
نویسندگان
, , , ,