کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
53583 46975 2015 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cobalt–zinc spinel dispersed over cordierite monoliths for catalytic N2O abatement from nitric acid plants
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Cobalt–zinc spinel dispersed over cordierite monoliths for catalytic N2O abatement from nitric acid plants
چکیده انگلیسی


• Optimized cobalt–zinc spinel catalyst dispersed over ceria washcoated cordierite.
• Co2.6Zn0.4O4/CeO2/cordierite catalyst highly active in deN2O in tail gases (X > 95%, 400 °C).
• Reaction rate per spinel content two orders of magnetite outperforming bulk Co2.6Zn0.4O4.

A series of monolithic catalysts with the 0.3 wt.% loading of the (Co,Zn)Co2O4 spinel active phase dispersed on bare and ceria and zincite washcoated cordierite substrates was prepared by impregnation method: (Co,Zn)Co2O4/cordierite, (Co,Zn)Co2O4/ZnO/cordierite and (Co,Zn)Co2O4/CeO2/cordierite. The catalysts were thoroughly characterized (XRD, RS, SEM/TEM/EDX, XRF), and their catalytic deN2O activity was investigated using model gas mixture (2000 ppm N2O/N2), and tail gases (1400 ± 50 ppm N2O, 900 ± 100 ppm NOx, 0.8 ± 0.2 vol.% H2O, 2.0 ± 0.2 vol.% O2) of the nitric acid pilot plant. The reported data points correspond to the measurements performed at possibly the closest tail gas composition. Morphological SEM analysis of the monolith cross-sections indicated the segregation of both ZnO and CeO2 washcoats in the form of islands covered by the (Co,Zn)Co2O4 active phase. The catalytic tests revealed that the monolithic catalysts exhibit high catalytic deN2O activity, reaching X > 96% at 400 °C (model gas) and 450 °C (tail gases) for the best (Co,Zn)Co2O4/CeO2/cordierite system. It was also found that the specific reaction rate per cobalt spinel weight loading for the monolithic catalysts is even two orders of magnitude higher than in the case of the optimized bulk spinel phase. Yet, the beneficial effect of ceria, dominant in the model gas mixture, is largely dumped in tail gases at low temperature. It is however restored above 400 °C, when the poisoning H2O and NOx molecules are desorbed.

Figure optionsDownload high-quality image (134 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 257, Part 1, 15 November 2015, Pages 93–97
نویسندگان
, , , , , , ,