کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536047 870439 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New separating hyperplane method with application to the optimisation of direct marketing campaigns
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
New separating hyperplane method with application to the optimisation of direct marketing campaigns
چکیده انگلیسی

In this article we present a new class of separating hyperplane methods for the binary classification task. Our hyperplanes have a very low Vapnik–Chervonenkis dimension, so they generalise well. Geometrically, our approach is based on searching of a proper pair of observations from different classes of the explained variable. Once this pair is found the discriminant hyperplane becomes orthogonal to the line connecting these observations. This method allows the direct optimisation of any prediction criterion, not necessary the fraction of correctly classified observations. Models generated by this technique have low computational complexity and allow fast classification. We illustrate the performance of our method by applying it to the problem of optimisation of direct marketing campaigns, where the natural measure of the prediction performance is the lift curve.

Research Highlights
► Separating hyperplanes with low Vapnik–Chervonenkis dimension are constructed.
► They allow fast classification of new observations.
► They allow direct optimisation of any classification criterion.
► The performance is illustrated on direct marketing campaign from mobile telephony.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 32, Issue 3, 1 February 2011, Pages 540–545
نویسندگان
,