کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5360987 1503647 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation
چکیده انگلیسی
In this study, we demonstrate a single-step heat treatment approach to synthesize boron and nitrogen doped graphene supporting PtRu electrocatalysts for methanol electro-oxidation reaction. The reduction of graphene oxide, boron or nitrogen doping of graphene and loading of PtRu nanoparticles happened simultaneously during the reaction process. The morphologies and microstructures of the as-prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic methanol oxidation activity and durability of the obtained catalysts were evaluated by the cyclic voltammetry and chronoamperometric techniques. The results reveal that the boron and nitrogen doped graphene supporting PtRu electrocatalysts can be successfully prepared by the single step heat treatment technique, and the introduction of boron or nitrogen containing function groups into the reduced graphene sheets could modulate the particle size and dispersion of the supporting PtRu nanoparticles and improve the electrocatalytic performance of methanol oxidation reaction. The optimal annealing temperature is 800 °C, the preferable heat treatment time is 60 min for the nitrogen-doped catalysts and 90 min for the boron-doped catalysts, and the catalysts prepared under such conditions present superior catalytic activities for methanol oxidation than those prepared under other heat treatment conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Surface Science - Volume 317, 30 October 2014, Pages 284-293
نویسندگان
, , , , , , ,