کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
536356 | 870503 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning dynamic Bayesian network models via cross-validation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study cross-validation as a scoring criterion for learning dynamic Bayesian network models that generalize well. We argue that cross-validation is more suitable than the Bayesian scoring criterion for one of the most common interpretations of generalization. We confirm this by carrying out an experimental comparison of cross-validation and the Bayesian scoring criterion, as implemented by the Bayesian Dirichlet metric and the Bayesian information criterion. The results show that cross-validation leads to models that generalize better for a wide range of sample sizes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 14, 15 October 2005, Pages 2295–2308
Journal: Pattern Recognition Letters - Volume 26, Issue 14, 15 October 2005, Pages 2295–2308
نویسندگان
Jose M. Peña, Johan Björkegren, Jesper Tegnér,