کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536425 870523 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Random direction divisive clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Random direction divisive clustering
چکیده انگلیسی

Projection methods for dimension reduction have enabled the discovery of otherwise unattainable structure in ultra high dimensional data. More recently, a particular method, namely Random Projection, has been shown to have the advantage of high quality data representations with minimal computation effort, even for data dimensions in the range of hundreds of thousands or even millions. Here, we couple this dimension reduction technique with data clustering algorithms that are specially designed for high dimensional cases. First, we show that the theoretical properties of both components can be combined in a sound manner, promising an effective clustering framework. Indeed, for a series of simulated and real ultra high dimensional data scenarios, as the experimental analysis shows, the resulting algorithms achieve high quality data partitions, orders of magnitude faster.


► We deal with the problem of clustering ultra high dimensional data.
► We develop a Random Projection based Hierarchical clustering framework.
► The resulting algorithms achieve high quality partitions, orders of magnitude faster.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 34, Issue 2, 15 January 2013, Pages 131–139
نویسندگان
, , ,