کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536668 870597 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distance functions for categorical and mixed variables
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Distance functions for categorical and mixed variables
چکیده انگلیسی

In this paper, we compare three different measures for computing Mahalanobis-type distances between random variables consisting of several categorical dimensions or mixed categorical and numeric dimensions – regular simplex, tensor product space, and symbolic covariance. The tensor product space and symbolic covariance distances are new contributions. We test the methods on two application domains – classification and principal components analysis. We find that the tensor product space distance is impractical with most problems. Over all, the regular simplex method is the most successful in both domains, but the symbolic covariance method has several advantages including time and space efficiency, applicability to different contexts, and theoretical neatness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 29, Issue 7, 1 May 2008, Pages 986–993
نویسندگان
, ,