کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5366900 | 1388357 | 2006 | 4 صفحه PDF | دانلود رایگان |

Meso-scale self-assembly of doped semiconductor nanocrystals leading to the formation of monocrystalline nanorods showing enhanced photo- and electro-luminescence properties are reported. Polycrystalline ZnS: Cu+-Al3+ nanoparticles of zinc-blended (cubic) structure with an average size of â¼4Â nm were aggregated in aqueous solution and grown into nanorods of length â¼400Â nm and aspect ratio â¼12. Transmission electron microscope (TEM) images indicate crystal growth mechanisms involving particle-to-particle oriented-attachment assisted by sulphur-sulphur catenation leading to covalent-linkage. The nanorods exhibit self-assembly dependant luminescence properties such as quenching of the lattice defect-related emissions accompanied by enhancement of dopant-related emission, efficient low-voltage electroluminescence (EL) and super-linear voltage-brightness EL characteristics. This study demonstrates the technological importance of aggregation based self-assembly in doped semiconductor nanosystems.
Journal: Applied Surface Science - Volume 252, Issue 11, 31 March 2006, Pages 3968-3971