کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5368324 | 1388390 | 2007 | 4 صفحه PDF | دانلود رایگان |

In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF4 and H2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CFn bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF4 and 40% of H2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90Â nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells.
Journal: Applied Surface Science - Volume 254, Issue 1, 31 October 2007, Pages 173-176