کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5368435 | 1388395 | 2007 | 6 صفحه PDF | دانلود رایگان |

The role of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) adsorption at water-air and polytetrafluoroethylene-water (PTFE) interfaces in wetting of low energy PTFE was established from measurements of the contact angle of aqueous AOT solutions in PTFE-solution drop-air systems and the aqueous AOT solution surface tension measurements. For calculations of the adsorption at these interfaces the relationship between adhesion tension (γLV cos θ) and surface tension (γLV), and the Gibbs and Young equations were taken into account. On the basis of the measurements and calculations the slope of the γLV cos θ-γLV curve was found to be constant and equal â1 over the whole range of surfactant concentration in solution. It means that the amount of surfactant adsorbed at the PTFE-water interface, ÎSL, is essentially equal to its amount adsorbed at water-air interface, ÎLV. By extrapolating the linear dependence between γLV cos θ and γLV to cos θ = 1 the determined value of critical surface tension of PTFE surface wetting, γC, was obtained (23.6 mN/m), and it was higher than the surface tension of PTFE (20.24 mN/m). Using the value of PTFE surface tension and the measured surface tension of aqueous AOT solution in Young equation, the PTFE-solution interface tension, γSL, was also determined. The shape of the γSL-log C curve occurred to be similar to the isotherm of AOT adsorption at water-air interface, and a linear dependence existed between the PTFE-solution interfacial tension and polar component of aqueous AOT solution. The dependence was found to be established by the fact that the work of adhesion of AOT solution to the PTFE surface was practically constant amounting 46.31 mJ/m2 which was close to the work of water adhesion to PTFE surface.
Journal: Applied Surface Science - Volume 253, Issue 17, 30 June 2007, Pages 7166-7171