کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5368574 | 1388400 | 2006 | 11 صفحه PDF | دانلود رایگان |

This article addresses band edge electronic structure of transition metal/rare earth (TM/RE) non-crystalline and nano-crystalline elemental and complex oxide high-k dielectrics for advanced semiconductor devices. Experimental approaches include X-ray absorption spectroscopy (XAS) from TM, RE and oxygen core states, photoconductivity (PC), and visible/vacuum ultra-violet (UV) spectroscopic ellipsometry (SE) combined with ab initio theory is applied to small clusters. These measurements are complemented by Fourier transform infra-red absorption (FTIR), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Two issues are highlighted: Jahn-Teller term splittings that remove d-state degeneracies of states at the bottom of the conduction band, and chemical phase separation and crystallinity in Zr and Hf silicates and ternary (Zr(Hf)O2)x(Si3N4)y(SiO2)1âxây alloys. Engineering solutions for optimization of both classes of high-k dielectric films, including limits imposed on the continued and ultimate scaling of the equivalent oxide thickness (EOT) are addressed.
Journal: Applied Surface Science - Volume 253, Issue 1, 31 October 2006, Pages 311-321