کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
536944 | 870648 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improving protein secondary structure prediction by using the residue conformational classes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, based on the 340 protein sequences and their corresponding secondary structures retrieved from the protein data bank (PDB), we group the 20 different amino acid residues into 3 conformational categories: f (Former), b (Breaker) and n (Neutral), which reflect the intrinsic preference of the residue for a given type of secondary structure (α-helix, β-sheets and Coil). Then, based on radial basis function neural network (RBFNN) technique, we use this information to reconstruct the input vectors and try to improve globulin protein secondary structure prediction (SSP) accuracy. The experimental results indicate that our approach outperforms the previous conventional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 15, November 2005, Pages 2346–2352
Journal: Pattern Recognition Letters - Volume 26, Issue 15, November 2005, Pages 2346–2352
نویسندگان
Guang-Zheng Zhang, D.S. Huang, Y.P. Zhu, Y.X. Li,