کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5370267 | 1388479 | 2006 | 7 صفحه PDF | دانلود رایگان |

The kinetics of hydrogen uptake of thin films of FeTi deposited on Si substrates and covered with 20 nm Pd were studied. The films serve as a model system for powdered FeTi, with grains that are (partly) covered with Pd, which serves as a protection for severe oxidation. Two FeTi compositions near the 50/50 composition were studied. The hydrogen uptake kinetics as a function of temperature and pressure were measured by probing the differential pressure between a small hydriding reaction chamber and a reference chamber. Both compositions showed first order kinetics for the largest portion of the uptake. Using results of additional measurements in which the thickness of the layers was varied, a model is proposed in which the uptake proceeds via fast channels through the film, followed by slower diffusion into the bulk. Finally, the influence of oxidation was studied. An FeTi-oxide underneath the Pd layer is a barrier for H diffusion. It was found that by annealing the H uptake rate could be increased. This is probably due to the decomposition of the oxide. Samples partly covered with Pd and partly by FeTi-oxides, obtained by decomposing the fully covered structure by air annealing at 250 °C, showed uptake throughout the entire FeTi film with an even faster rate than in a fully covered film. Some explanation with simple models of the observed phenomena is given.
Journal: Applied Surface Science - Volume 253, Issue 2, 15 November 2006, Pages 771-777