کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5373287 1504214 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A study of the valence shell electronic structure and photoionisation dynamics of s-triazine
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
A study of the valence shell electronic structure and photoionisation dynamics of s-triazine
چکیده انگلیسی


- Electronic structure and photoionisation dynamics of s-triazine have been studied.
- Dynamics reflect σ or π character of orbital.
- Many-body effects influence inner valence shell ionisation.

A joint experimental and theoretical approach has been used to study the valence shell electronic structure and photoionisation dynamics of s-triazine (1,3,5-triazine). Synchrotron radiation has been employed to record angle resolved photoelectron spectra of the complete valence shell for photon energies between 17.5 and 100 eV, thereby allowing photoelectron anisotropy parameters and branching ratios to be determined. Absolute photoionisation partial cross sections have been estimated as the product of these branching ratios and the absolute photoabsorption cross section. The Kohn-Sham and the time-dependent version of density functional theory methods have been used to calculate photoelectron anisotropy parameters and photoionisation partial cross sections, and these have been compared with the corresponding experimental data. The calculations predict that shape resonances affect the photoionisation dynamics of several of the molecular orbitals. The angle resolved photoelectron spectra suggest that the 1a2″(π) orbital is more tightly bound than the 5e′(σ) orbital, and that the 4a1′(σ) orbital is more tightly bound than the 1a2′(σ) orbital, in agreement with the predicted molecular orbital sequence. For the outer valence orbitals the single-particle picture of ionisation holds but electron correlation becomes increasingly important for the inner valence 4e′, 3e′ and 3a1′ orbitals and leads to a redistribution of intensity. Instead of a readily distinguishable main-line, associated with each of these orbitals, the photoelectron intensity is spread over numerous satellite states and the resulting band is broad and featureless.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Physics - Volumes 450–451, 1–15 April 2015, Pages 115-124
نویسندگان
, , , , , ,