کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
53984 46991 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Selective acetalization of ethylene glycol with methyl 2-napthyl ketone over solid acids: Efficacy of acidic clay supported Cs2.5H0.5PW12O40
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Selective acetalization of ethylene glycol with methyl 2-napthyl ketone over solid acids: Efficacy of acidic clay supported Cs2.5H0.5PW12O40
چکیده انگلیسی


• Acetalization of ethylene glycol with methyl 2-napthyl ketone with several acid catalysts.
• 20% (w/w) Cs-DTP/K-10 was the best catalyst.
• 87% conversion of methyl 2-napthyl ketone with 100% selectivity toward 2-methyl-2-napthyl-1,3-dioxolane.
• Catalyst characterization by XRD, BET, FTIR, TPD and SEM techniques.
• Reaction mechanism and kinetic model.

Catalytic conversion of biomass to value added products is relevant with regard to several industries. Biomass derived ethylene glycol has many applications. Acetalization is used to synthesize valuable chemicals and also occasionally to protect carbonyl groups of aromatic molecules in organic transformations. Acetalization of ethylene glycol to cyclic dioxolane has many applications in fragrance, cosmetics, food and beverage additives, pharmaceuticals, detergents, and lacquer industries. The current work reports synthesis of 2-methyl-2-napthyl-1,3-dioxolane by acetalization of ethylene glycol with methyl 2-napthyl ketone using several heterogeneous solid acid catalysts including 20% (w/w) Cs2.5H0.5PW12O40/K-10 (Cs-DTP/K-10), UDCaT-4, UDCaT-5 and K-10 clay. Among them, 20% (w/w) Cs-DTP/K-10 catalyst was found to be the most efficient catalyst giving 87% conversion of methyl 2-napthyl ketone with 100% selectivity toward 2-methyl-2-napthyl-1,3-dioxolane. Effects of several reaction parameters were studied and optimized. The optimum reaction conditions were: 110 °C, molar ratio of methyl 2-naphthyl ketone to ethylene glycol 1:2, catalyst loading 0.02 g/cm3, speed of agitation 800 rpm, and time 3 h. Reaction mechanism and kinetic model were developed. The methodology was extended to different substrates, and catalyst reusability was also studied. The catalyst was well characterized by various techniques such as XRD, BET, FTIR, TPD and SEM. It is robust and recyclable.

Figure optionsDownload high-quality image (100 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 237, 15 November 2014, Pages 125–135
نویسندگان
, ,