کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
54046 46994 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Theoretical study on the reaction mechanisms of the aldol-condensation of 5-hydroxymethylfurfural with acetone catalyzed by MgO and MgO+
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Theoretical study on the reaction mechanisms of the aldol-condensation of 5-hydroxymethylfurfural with acetone catalyzed by MgO and MgO+
چکیده انگلیسی


• The reaction mechanism involves the crucial reaction steps of H-shift and CC bond formation.
• The rate-determining step is concerning to the H-shift.
• Water serves as a bridge in the H-shift reaction step.
• MgO+ exhibits better catalytic performance than MgO.
• Both the Lewis acidity and Brønsted basicity of active sites are beneficial.

The reaction mechanisms and the turnover frequencies of the aldol-condensation of 5-hydroxymethylfurfural (HMF) with acetone catalyzed by the neutral MgO and the cationic MgO+ have been theoretically investigated at B3LYP/6-311++G(d,p) level, using the polarizable continuum model in aqueous solution at the temperature of 326 K. The aldol-condensation of HMF with acetone catalyzed by the neutral MgO or the cationic MgO+ is thermodynamically favorable. The reaction mechanism involves the crucial reaction steps of H-shift and CC bond formation, while the rate-determining step is concerned to the H-shift. The Lewis acidity of the cationic MgO+ makes it exhibit better catalytic performance than the neutral MgO. Water, as a bridge in the H-shift, interacts with both the neutral MgO and the cationic MgO+ moieties, leading to the Brønsted basicity, and then promoting the catalytic performance both of the neutral MgO and the cationic MgO+. Both the Lewis acidity and Brønsted basicity of active sites can enhance the catalytic performance in the aldol-condensation of HMF with acetone.

Figure optionsDownload high-quality image (135 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 245, 1 May 2015, Pages 100–107
نویسندگان
, , ,