کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5429301 1397344 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Angular smoothing and spatial diffusion from the Feynman path integral representation of radiative transfer
موضوعات مرتبط
مهندسی و علوم پایه شیمی طیف سنجی
پیش نمایش صفحه اول مقاله
Angular smoothing and spatial diffusion from the Feynman path integral representation of radiative transfer
چکیده انگلیسی

The propagation kernel for time dependent radiative transfer is represented by a Feynman path integral (FPI). The FPI is approximately evaluated in the spatial-Fourier domain. Spatial diffusion is exhibited in the kernel when the approximations lead to a Gaussian dependence on the Fourier domain wave vector. The approximations provide an explicit expression for the diffusion matrix. They also provide an asymptotic criterion for the self-consistency of the diffusion approximation. The criterion is weakly violated in the limit of large numbers of scattering lengths. Additional expansion of higher-order terms may resolve whether this weak violation is significant.

Research Highlights►Explicit Feynman path integral formulation of radiative transfer. ►Systematic approximation process for evaluating the FPI. ►Asymptotic criteria for validity of approximation. ►Evaluation of the diffusion limit of the expansion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 112, Issue 4, March 2011, Pages 751-760
نویسندگان
,