کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5450694 | 1513063 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An ensemble prediction intervals approach for short-term PV power forecasting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
Prediction intervals (PIs) estimation is a powerful statistical tool used for quantifying the uncertainty of PV power generation in power systems. The lower upper bound estimation (LUBE) approach, when combined with extreme learning machines (ELM), is effective for constructing PIs. ELM is an efficient but unstable machine-learning method in generating reliable and informative PIs. To overcome this instability, a novel ensemble approach based on ELM and LUBE (ELUBE) is proposed for short-term PV power forecasting. To optimize quality of PIs, the sigmoid, radial basis and sine functions are used to train three groups of ELUBE models, and the models with higher performance are selected as ensemble members. Furthermore, a weighted average method is developed to aggregate the selected individuals. An improved differential evolution algorithm is used to perform the search for the optimal combination weight values of PIs. The feasibility and effectiveness of the proposed approach are evaluated by using PV datasets, obtained from a lab-scale DC micro-grid system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 155, October 2017, Pages 1072-1083
Journal: Solar Energy - Volume 155, October 2017, Pages 1072-1083
نویسندگان
Qiang Ni, Shengxian Zhuang, Hanming Sheng, Gaoqiang Kang, Jian Xiao,