کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5455275 | 1514636 | 2017 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effect of contact pressure and stress ratio on the fretting fatigue behaviour of Ti-6Al-4V
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Fretting fatigue behaviour of Ti-6Al-4V was studied at two different contact pressures (150Â MPa and 300Â MPa) and two different stress ratios (0.1 and 0.7). The variation of frictional force and tangential force coefficient (TFC) with the number of fretting cycles was studied to understand the fretting fatigue behaviour of the alloy. As evidenced by the variation of frictional force with time as well as frictional force versus cyclic load hysteresis-type plots, gross sliding was present at lower contact pressures and lower stress ratios, leading to higher TFC values and surface roughness. Oxide particles were detected in the slip region and in the initiated fretting cracks indicating fretting debris. While the effect of increasing contact pressure in increasing the fretting fatigue life was clearly seen at higher stress ratio, it was not observed at lower stress ratio. At both contact pressures, a significant increase in life with an increase in stress ratio was noticed. The contact problem was analysed using the existing numerical tools to obtain the contact stresses. From these stresses, fretting fatigue lives were estimated as a sum of initiation lives estimated from multi-axial fatigue parameters and propagation lives estimated from fracture mechanics approach. A good agreement while using Findley parameter indicates that the adopted procedure can effectively account for the effects of contact pressure as well as stress ratio.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 707, 7 November 2017, Pages 647-656
Journal: Materials Science and Engineering: A - Volume 707, 7 November 2017, Pages 647-656
نویسندگان
Virendra Kumar Verma, Hamza Naseem, S. Ganesh Sundara Raman, H. Murthy, Anuradha Nayak Majila, D. Chandru Fernando,