کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5457656 1515829 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L10 structure in Pettifor map for binary compounds
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فلزات و آلیاژها
پیش نمایش صفحه اول مقاله
MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L10 structure in Pettifor map for binary compounds
چکیده انگلیسی
Quinary exact equi-atomic MnFeNiCuPt and MnFeNiCuCo alloys were investigated to examine their formation of high-entropy alloys (HEAs) by focusing on an L10 structure from Pettifor map for binary compounds with 1:1 stoichiometry. The MnFeNiCuPt alloy was practically selected through computer-assisted alloy design under conditions of ≤ 20 at% noble metals, and the condition that the L10 structure appears as frequently as possible in the constituent binary equi-atomic compositions comprised of 78 elements. MnFeNiCuCo was selected by substituting Pt with Co from the MnFeNiCuPt alloy as the second candidate. X-ray diffraction and observations by scanning electron microscopy (by energy dispersive spectroscopy for composition analysis) revealed that as-prepared MnFeNiCuPt and MnFeNiCuCo alloys were formed into HEAs with dual fcc structures containing dendrites of ∼10 μm in width. The MnFeNiCuPt and MnFeNiCuCo alloys annealed at 1373 K for 43.2 ks and subsequently quenched in water formed single fcc phases and dual fcc phases, respectively. The annealed MnFeNiCuPt and MnFeNiCuCo alloys were subsequently cooled in a furnace and formed single L12 ordered phases and dual fcc phases, respectively. These phases, experimentally observed in the annealed samples, could be partially explained by thermodynamic calculations using Thermo-Calc with SSOL4 and SSOL5 databases for solid solutions. The MnFeNiCuPt and MnFeNiCuCo alloys exhibit soft magnetism with saturation magnetization of 0.23 and 0.43 T, respectively, with coercivity values of ∼1 kA m−1. An alloy design for HEAs based on digitalized crystallographic data of these samples could lead to the discovery of new HEAs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Intermetallics - Volume 82, March 2017, Pages 107-115
نویسندگان
, , ,