کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
546257 | 1450561 | 2006 | 5 صفحه PDF | دانلود رایگان |

The requirement of electrical-thermal-stress (ETS) modelling of semiconductor devices demands the use of finite element analysis (FEA) for device simulation. In this work, we employ a new finite element analysis software, FEMLAB for the ETS simulation of power diode, a basic building blocking for power electronic devices, and the static electrical and recovery transient characteristics of power diode are considered. The E-T model of the power diode is compared with the results from Medici, and the T-S model of the power diode is compared with the results from ANSYS. Good agreements are observed from both comparisons. The S-E model of power diode is computed using the deformation potential theory, and we demonstrate that the electron and hole mobilities of (0 1 0) biaxial compressive stressed power diode are modified by the stress due to energy splitting. The strain-induced changes of bandgap and effective mobilities cause a reduction in the diode drive current by about 5% at the maximum along [0 0 1] direction.
Journal: Microelectronics Reliability - Volume 46, Issues 9–11, September–November 2006, Pages 1823-1827