کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5473029 | 1520071 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Iterative update correction and multi-frame state extraction based probability hypothesis density filter
ترجمه فارسی عنوان
تصحیح به روز رسانی تصحیح شده و فرضیۀ احتمال احتمالی بر اساس حالت چند فریم فیلتر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
چکیده انگلیسی
Probability hypothesis density (PHD) filter is an effective means to track multiple targets in that it avoids explicit data association between measurements and tracks. The Gaussian mixture (GM) implementation of the PHD filter is a closed-form solution to the PHD filter for linear Gaussian model. However, the Gaussian mixture PHD filter suffers from filtering performance degradation problem in multi-target tracking scenarios with low probability of detection, especially when it comes to tracking nearby targets in the imperfect probability of detection conditions. Aiming at the problem, a robust Gaussian mixture PHD algorithm for tracking multiple targets is proposed. First, a novel nearby target tracking method is introduced to reallocate the possible incorrect weights of the nearby targets. Then, a novel target state estimation scheme, making full use of the multiple previous weights of the targets, is adopted to extract the estimates of the target states. Simulation experiments have demonstrated that the proposed approach can achieve better performance in terms of target states and their number than the other related algorithms when tracking multiple nearby targets in the low probability of detection scenarios.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aerospace Science and Technology - Volume 63, April 2017, Pages 54-62
Journal: Aerospace Science and Technology - Volume 63, April 2017, Pages 54-62
نویسندگان
Huanqing Zhang, Hongwei Ge, Jinlong Yang, Peng Li,