کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
548131 1450544 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermal reliability prediction and analysis for high-density electronic systems based on the Markov process
ترجمه فارسی عنوان
پیش بینی و تحلیل قابلیت اطمینان برای سیستم های الکترونیکی با چگالی بالا بر اساس فرایند مارکوف
کلمات کلیدی
سیستم های الکترونیکی، برآورد و پیش بینی قابلیت اطمینان حرارتی، روند تصادفی، نظریه مارکوف، پارامترهای ویژگی ارزیابی قابلیت اطمینان حرارتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سخت افزارها و معماری
چکیده انگلیسی


• A Markov model of thermal reliability prediction for electronic systems was built.
• The feature parameters of thermal reliability was derived by the comprehensive model.
• The model was applied to an actual electronic system, thermal reliability was predicted and analyzed.
• Effective methods for improving thermal reliability are presented.

Thermal-mechanical fatigue is one of the main failure modes for electronic systems, particularly for high-density electronic systems with high-power components. Thermal reliability estimation and prediction have been an increasing concern for improving the safety and reliability of electronic systems. In this paper, we propose a stochastic process prediction model to estimate the thermal reliability of an electronic system based on Markov theory. We first divided the high-density electronic systems into four modules: the energy transformation and protection module, the electronic control module, the connection module, and the signal transmission and transformation module. By integrating failure and repair characteristics of the four modules, a stochastic model of thermal reliability analysis and prediction for a whole electronic system was built based on the Markov process. The feature parameters of thermal reliability evaluation, including thermal reliability, thermal failure probability, mean time between thermal faults, and thermal stable availability, were derived based on our comprehensive model. Finally, we applied the model to an indoor electronic system of DC frequency conversion conditioning. The thermal reliability was estimated and predicted using tested failure and debugging repair data. Effective methods for improving thermal reliability are presented and analyzed based on the comprehensive Markov model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microelectronics Reliability - Volume 56, January 2016, Pages 182–188
نویسندگان
, , , ,