کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
548193 | 872174 | 2013 | 7 صفحه PDF | دانلود رایگان |

AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MIS-HEMTs) using a radio-frequency magnetron sputtered ZrZnO transparent oxide layer as a gate insulator are investigated and compared with traditional GaN HEMTs. A negligible hysteresis voltage shift in the C–V curves is seen, from 0.09 V to 0.36 V, as the thickness of ZrZnO films increases. The composition of ZrZnO at different annealing temperatures is observed using X-ray photoelectron spectroscopy (XPS). The ZrZnO thin film achieves good thermal stability after 600 °C, 700 °C and 800 °C post-deposition annealing (PDA) because of its high binding energy. Based on the interface trap density analysis, Dit has a value of 2.663 × 1012 cm−2/eV for 10-nm-thick ZrZnO-gate HEMTs and demonstrates better interlayer characteristics, which results in a better slopes for the Ids degradation (5.75 × 10−1 mA/mm K−1) for operation from 77 K to 300 K. The 10-nm-thick ZrZnO-gate device also exhibits a flat and a stable 1/f noise, as VGS–Vth, and at various operating temperatures. Therefore, ZrZnO has good potential for use as the transparent film for a gate insulator that improves the GaN-based FET threshold voltage and improves the number of surface defects at various operating temperatures.
Journal: Microelectronics Reliability - Volume 53, Issue 8, August 2013, Pages 1130–1136