کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
548410 | 872214 | 2007 | 5 صفحه PDF | دانلود رایگان |

The effects of oxygen vacancies on the electronic structure of silicon dioxide and the hole tunneling current were investigated using first-principles calculations. A level related to oxygen vacancy was obtained to be nearly 2.0 eV from the top of valence band within the bandgap of the α-quartz supercell with one oxygen vacancy. And therefore the defect assisted hole (electron) tunneling currents were calculated. The results shows that the hole tunneling current will be dominant for a thinner oxide thickness at low oxide field and the contribution of trap assisted hole tunneling to the total tunneling current decreases with oxide thickness and oxide field increasing. It is concluded that the effects of the oxygen vacancies on the hole tunneling current become smaller with larger oxide thickness and higher electric field.
Journal: Microelectronics Reliability - Volume 47, Issue 8, August 2007, Pages 1213–1217