کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5485332 1523192 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings
ترجمه فارسی عنوان
پوشش الکترولیز پوششهای نیکل بور با استفاده از فرکانس فراصوت با فرکانس پایین: اثر فرکانس اولتراسونیک بر روی پوشش
کلمات کلیدی
رسوب الکترولیز، نیکل بور، سونوکمی، تحریک سونوگرافی،
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم آکوستیک و فرا صوت
چکیده انگلیسی
The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12 ± 1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300 rpm and the other two employing ultrasound at a frequency of either 20 or 35 kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics - Volume 77, May 2017, Pages 61-68
نویسندگان
, , , ,