کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5491004 1524789 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of heat treatment on interface driven magnetic properties of CoFe films
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Effect of heat treatment on interface driven magnetic properties of CoFe films
چکیده انگلیسی
We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 432, 15 June 2017, Pages 96-101
نویسندگان
, ,