کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5495065 | 1528790 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On moduli space of symmetric orthogonal matrices and exclusive Racah matrix S¯ for representation R = [3,1] with multiplicities
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک هسته ای و انرژی بالا
پیش نمایش صفحه اول مقاله
![عکس صفحه اول مقاله: On moduli space of symmetric orthogonal matrices and exclusive Racah matrix S¯ for representation R = [3,1] with multiplicities On moduli space of symmetric orthogonal matrices and exclusive Racah matrix S¯ for representation R = [3,1] with multiplicities](/preview/png/5495065.png)
چکیده انگلیسی
Racah matrices and higher j-symbols are used in description of braiding properties of conformal blocks and in construction of knot polynomials. However, in complicated cases the logic is actually inverted: they are much better deduced from these applications than from the basic representation theory. Following the recent proposal of [1] we obtain the exclusive Racah matrix S¯ for the currently-front-line case of representation R=[3,1] with non-trivial multiplicities, where it is actually operator-valued, i.e. depends on the choice of bases in the intertwiner spaces. Effective field theory for arborescent knots in this case possesses gauge invariance, which is not yet properly described and understood. Because of this lack of knowledge a big part (about a half) of S¯ needs to be reconstructed from orthogonality conditions. Therefore we discuss the abundance of symmetric orthogonal matrices, to which S¯ belongs, and explain that dimension of their moduli space is also about a half of that for the ordinary orthogonal matrices. Thus the knowledge approximately matches the freedom and this explains why the method can work - with some limited addition of educated guesses. A similar calculation for R=[r,1] for r>3 should also be doable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters B - Volume 766, 10 March 2017, Pages 291-300
Journal: Physics Letters B - Volume 766, 10 March 2017, Pages 291-300
نویسندگان
A. Morozov,