| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5495820 | 1529826 | 2017 | 39 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A representation of Weyl-Heisenberg Lie algebra in the quaternionic setting
												
											ترجمه فارسی عنوان
													یک نمایه از جبر دروغین ویل-هاسنبرگ در محیط چهارگانه 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													فیزیک و نجوم
													فیزیک و نجوم (عمومی)
												
											چکیده انگلیسی
												Using a left multiplication defined on a right quaternionic Hilbert space, linear self-adjoint momentum operators on a right quaternionic Hilbert space are defined in complete analogy with their complex counterpart. With the aid of the so-obtained position and momentum operators, we study the Heisenberg uncertainty principle on the whole set of quaternions and on a quaternionic slice, namely on a copy of the complex plane inside the quaternions. For the quaternionic harmonic oscillator, the uncertainty relation is shown to saturate on a neighborhood of the origin in the case we consider the whole set of quaternions, while it is saturated on the whole slice in the case we take the slice-wise approach. In analogy with the complex Weyl-Heisenberg Lie algebra, Lie algebraic structures are developed for the quaternionic case. Finally, we introduce a quaternionic displacement operator which is square integrable, irreducible and unitary, and we study its properties.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 385, October 2017, Pages 180-213
											Journal: Annals of Physics - Volume 385, October 2017, Pages 180-213
نویسندگان
												B. Muraleetharan, K. Thirulogasanthar, I. Sabadini, 
											