کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5499631 1533633 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fractional generalization of the classical lattice dynamics approach
ترجمه فارسی عنوان
یک تعمیم جزئی از رویکرد پویایی شبکه کلاسیک
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
چکیده انگلیسی
The fractional lattice Laplacian matrix contains for α=2 the classical local lattice approach with well known continuum limit of classic local standard elasticity, and for other integer powers to gradient elasticity. We also present a generalization of the fractional Laplacian matrix to n-dimensional cubic periodic (nD tori) and infinite lattices. We show that in the continuum limit the fractional Laplacian matrix yields the well-known kernel of the Riesz fractional Laplacian derivative being the kernel of the fractional power of Laplacian operator. In this way we demonstrate the interlink of the fractional lattice approach with existing continuous fractional calculus. The developed approach appears to be useful to analyze fractional random walks on lattices as well as fractional wave propagation phenomena in lattices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 92, November 2016, Pages 43-50
نویسندگان
, , , , ,