کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5499866 1533630 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Irving-Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Irving-Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel
چکیده انگلیسی
Recently, Abdon Atangana and Dumitru Baleanu suggested a novel fractional operator based in the Mittag-Leffler function with non-singular and nonlocal kernel. In this paper using the newly established fractional operator, an alternative representation of the Irving-Mullineux oscillator via Atangana-Baleanu fractional derivative in Liouville-Caputo sense is presented. Numerical simulations are obtained using an iterative scheme via Sumudu-Picard iterative method. The existence and uniqueness of the solutions are studied in detail using the fixed-point theorem and some properties of the inner product and the Hilbert space. Numerical simulations of the special solutions were done and new chaotic behaviors are obtained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 95, February 2017, Pages 179-186
نویسندگان
,