کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
552041 1451078 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An ontology-based Web mining method for unemployment rate prediction
ترجمه فارسی عنوان
یک روش استخراج وب مبتنی بر هستی شناسی برای پیش بینی میزان بیکاری
کلمات کلیدی
پیش بینی نرخ بیکاری، داده های پرس و جو موتور جستجو، هستی شناسی دامنه، معدن وب شبکه های عصبی، رگرسیون های بردار پشتیبانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی


• We address the limitations of existing unemployment rate prediction models.
• We propose an ontology-based Web mining framework for unemployment rate prediction.
• Domain ontology construction for Web queries extraction is illustrated.
• State-of-the-art feature selection and data mining methods are explored.
• Our research improves the current practice in unemployment trend prediction.

Unemployment rate is one of the most critical economic indicators. By analyzing and predicting unemployment rate, government officials can develop appropriate labor market related policies in response to the current economic situation. Accordingly, unemployment rate prediction has attracted a lot of attention from researchers in recent years. The main contribution of this paper is the illustration of a novel ontology-based Web mining framework that leverages search engine queries to improve the accuracy of unemployment rate prediction. The proposed framework is underpinned by a domain ontology which captures unemployment related concepts and their semantic relationships to facilitate the extraction of useful prediction features from relevant search engine queries. In addition, state-of-the-art feature selection methods and data mining models such as neural networks and support vector regressions are exploited to enhance the effectiveness of unemployment rate prediction. Our experimental results show that the proposed framework outperforms other baseline forecasting approaches that have been widely used for unemployment rate prediction. Our empirical findings also confirm that domain ontology and search engine queries can be exploited to improve the effectiveness of unemployment rate prediction. A unique advantage of the proposed framework is that it not only improves prediction performance but also provides human comprehensible explanations for the changes of unemployment rate. The business implication of our research work is that government officials and human resources managers can utilize the proposed framework to effectively analyze unemployment rate, and hence to better develop labor market related policies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 66, October 2014, Pages 114–122
نویسندگان
, , , ,