کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
552363 873216 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximizing customer satisfaction through an online recommendation system: A novel associative classification model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Maximizing customer satisfaction through an online recommendation system: A novel associative classification model
چکیده انگلیسی

Offering online personalized recommendation services helps improve customer satisfaction. Conventionally, a recommendation system is considered as a success if clients purchase the recommended products. However, the act of purchasing itself does not guarantee satisfaction and a truly successful recommendation system should be one that maximizes the customer's after-use gratification. By employing an innovative associative classification method, we are able to predict a customer's ultimate pleasure. Based on customer's characteristics, a product will be recommended to the potential buyer if our model predicts his/her satisfaction level will be high. The feasibility of the proposed recommendation system is validated through laptop Inspiron 1525.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 48, Issue 3, February 2010, Pages 470–479
نویسندگان
, , ,