کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
552363 | 873216 | 2010 | 10 صفحه PDF | دانلود رایگان |

Offering online personalized recommendation services helps improve customer satisfaction. Conventionally, a recommendation system is considered as a success if clients purchase the recommended products. However, the act of purchasing itself does not guarantee satisfaction and a truly successful recommendation system should be one that maximizes the customer's after-use gratification. By employing an innovative associative classification method, we are able to predict a customer's ultimate pleasure. Based on customer's characteristics, a product will be recommended to the potential buyer if our model predicts his/her satisfaction level will be high. The feasibility of the proposed recommendation system is validated through laptop Inspiron 1525.
Journal: Decision Support Systems - Volume 48, Issue 3, February 2010, Pages 470–479