کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
552584 873247 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
چکیده انگلیسی

Because malicious intrusions into critical information infrastructures are essential to the success of cyberterrorists, effective intrusion detection is also essential for defending such infrastructures. Cyberterrorism thrives on the development of new technologies; and, in response, intrusion detection methods must be robust and adaptive, as well as efficient. We hypothesize that genetic programming algorithms can aid in this endeavor. To investigate this proposition, we conducted an experiment using a very large dataset from the 1999 Knowledge Discovery in Database (KDD) Cup data, supplied by the Defense Advanced Research Projects Agency (DARPA) and MIT's Lincoln Laboratories. Using machine-coded linear genomes and a homologous crossover operator in genetic programming, promising results were achieved in detecting malicious intrusions. The resulting programs execute in real time, and high levels of accuracy were realized in identifying both positive and negative instances.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 43, Issue 4, August 2007, Pages 1362–1374
نویسندگان
, , , ,