کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5529599 | 1401703 | 2017 | 6 صفحه PDF | دانلود رایگان |
Background and purposeThe aim of this study is to derive “dose painting by numbers” prescriptions from retrospectively observed recurrence volumes in a patient group treated with conventional radiotherapy for head and neck squamous cell carcinoma.Materials and methodsThe spatial relation between retrospectively observed recurrence volumes and pre-treatment standardized uptake values (SUV) from fluorodeoxyglucose positron emission tomography (FDG-PET) imaging was determined. Based on this information we derived SUV driven dose-response functions and used these to optimize ideal dose redistributions under the constraint of equal average dose to the tumor volumes as for a conventional treatment. The response functions were also implemented into a treatment planning system for realistic dose optimization.ResultsThe calculated tumor control probabilities (TCP) increased between 0.1-14.6% by the ideal dose redistributions for all included patients, where patients with larger and more heterogeneous tumors got greater increases than smaller and more homogeneous tumors.ConclusionsDose painting prescriptions can be derived from retrospectively observed recurrence volumes spatial relation to pre-treatment FDG-PET image data. The ideal dose redistributions could significantly increase the TCP for patients with large tumor volumes and large spread in SUV from FDG-PET. The results yield a basis for prospective studies to determine the clinical value for dose painting of head and neck squamous cell carcinomas.
Journal: Radiotherapy and Oncology - Volume 122, Issue 2, February 2017, Pages 236-241