کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5531865 | 1401817 | 2017 | 11 صفحه PDF | دانلود رایگان |

• The Xenopus laevis genome supports differential splicing analysis.
• A junction-centric analysis of splicing allows for efficient detection of splicing events.
• Junction-centric analysis of splicing is robust to annotation changes.
• Ptbp1 regulation of splicing is partially conserved between Xenopus and human.
Regulation of alternative splicing is an important process for cell differentiation and development. Down-regulation of Ptbp1, a regulatory RNA-binding protein, leads to developmental skin defects in Xenopus laevis. To identify Ptbp1-dependent splicing events potentially related to the phenotype, we conducted RNAseq experiments following Ptbp1 depletion. We systematically compared exon-centric and junction-centric approaches to detect differential splicing events. We showed that the junction-centric approach performs far better than the exon-centric approach in Xenopus laevis. We carried out the same comparisons using simulated data in human, which led us to propose that the better performances of the junction-centric approach in Xenopus laevis essentially relies on an incomplete exonic annotation associated with a correct transcription unit annotation. We assessed the capacity of the exon-centric and junction-centric approaches to retrieve known and to discover new Ptbp1-dependent splicing events. Notably, the junction-centric approach identified Ptbp1-controlled exons in agfg1, itga6, actn4, and tpm4 mRNAs, which were independently confirmed. We conclude that the junction-centric approach allows for a more complete and informative description of splicing events, and we propose that this finding might hold true for other species with incomplete annotations.
Journal: Developmental Biology - Volume 426, Issue 2, 15 June 2017, Pages 449–459