کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5531899 1401819 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Original research articleAsymmetrically deployed actomyosin-based contractility generates a boundary between developing leg segments in Drosophila
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Original research articleAsymmetrically deployed actomyosin-based contractility generates a boundary between developing leg segments in Drosophila
چکیده انگلیسی


- The tensile properties of a tissue boundary are described.
- Alignment of interfaces along the boundary correlates with Myosin II enrichment.
- Alignment requires proper regulation of actomyosin contractility.

The formation of complex tissues from simple epithelial sheets requires the regional subdivision of the developing tissue. This is initially accomplished by a sequence of gene regulatory hierarchies that set up distinct fates within adjacent territories, and rely on cross-regulatory interactions to do so. However, once adjacent territories are established, cells that confront one another across territorial boundaries must actively participate in maintaining separation from each other. Classically, it was assumed that adhesive differences would be a primary means of sorting cells to their respective territories. Yet it is becoming clear that no single, simple mechanism is at play. In the few instances studied, an emergent theme along developmental boundaries is the generation of asymmetry in cell mechanical properties. The repertoire of ways in which cells might establish and then put mechanical asymmetry to work is not fully appreciated since only a few boundaries have been molecularly studied. Here, we characterize once such boundary in the develop leg epithelium of Drosophila. The region of the pretarsus / tarsus is a known gene expression boundary that also exhibits a lineage restriction (Sakurai et al., 2007). We now show that the interface comprising this boundary is strikingly aligned compared to other cell interfaces across the disk. The boundary also exhibits an asymmetry for both Myosin II accumulation as well as one of its activators, Rho Kinase. Furthermore, the enrichment correlates with increased mechanical tension across that interface, and that tension is Rho Kinase-dependent. Lastly, interfering with actomyosin contractility, either by depletion of myosin heavy chain or expression of a phosphomimetic variant of regulatory light chain causes defects in alignment of the interfaces. These data suggest strongly that mechanical asymmetries are key in establishing and maintaining this developmental boundary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Developmental Biology - Volume 429, Issue 1, 1 September 2017, Pages 165-176
نویسندگان
, , , ,