کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
553292 | 873470 | 2011 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Detection of financial statement fraud and feature selection using data mining techniques
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recently, high profile cases of financial statement fraud have been dominating the news. This paper uses data mining techniques such as Multilayer Feed Forward Neural Network (MLFF), Support Vector Machines (SVM), Genetic Programming (GP), Group Method of Data Handling (GMDH), Logistic Regression (LR), and Probabilistic Neural Network (PNN) to identify companies that resort to financial statement fraud. Each of these techniques is tested on a dataset involving 202 Chinese companies and compared with and without feature selection. PNN outperformed all the techniques without feature selection, and GP and PNN outperformed others with feature selection and with marginally equal accuracies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 50, Issue 2, January 2011, Pages 491–500
Journal: Decision Support Systems - Volume 50, Issue 2, January 2011, Pages 491–500
نویسندگان
P. Ravisankar, V. Ravi, G. Raghava Rao, I. Bose,