کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
555529 1451264 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated annual cropland mapping using knowledge-based temporal features
ترجمه فارسی عنوان
نقشه برداری از نقشه های کشاورزی سالانه با استفاده از ویژگی های زمانی مبتنی بر دانش
کلمات کلیدی
باغچه طبقه بندی، نزدیک به زمان واقعی، تعمیم، عدم قطعیت موضوع
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی

Global, timely, accurate and cost-effective cropland mapping is a prerequisite for reliable crop condition monitoring. This article presented a simple and comprehensive methodology capable to meet the requirements of operational cropland mapping by proposing (1) five knowledge-based temporal features that remain stable over time, (2) a cleaning method that discards misleading pixels from a baseline land cover map and (3) a classifier that delivers high accuracy cropland maps (>>80%). This was demonstrated over four contrasted agrosystems in Argentina, Belgium, China and Ukraine. It was found that the quality and accuracy of the baseline impact more the certainty of the classification rather than the classification output itself. In addition, it was shown that interpolation of the knowledge-based features increases the stability of the classifier allowing for its re-use from year to year without recalibration. Hence, the method shows potential for application at larger scale as well as for delivering cropland map in near real time.

Figure optionsDownload high-quality image (574 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 110, December 2015, Pages 1–13
نویسندگان
, , ,